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Abstract 

 
The high-altitude and mobility characteristics of unmanned aerial vehicles (UAVs) have made 
them a key element of new radio systems, particularly because they can exceed the limits of 
terrestrial networks. However, at high altitudes, UAVs can be significantly affected by 
intercell interference at a high line-of-sight probability. To mitigate this drawback, we propose 
an algorithm that selects the optimal beam to reduce interference and maximize transmission 
efficiency. The proposed algorithm comprises two steps: constructing a user-location-based 
fingerprint database according to the user types presented herein and cooperative beam 
selection. Simulations were conducted using cellular cooperative downlink systems for 
analyzing the performance of the proposed method, and the signal-to-interference-plus-noise 
cumulative distribution function and spectral efficiency cumulative distribution function were 
used as performance analysis indicators. Simulation results showed that the proposed 
algorithm could reduce the effect of interference and increase the performance of the desired 
signal. Moreover, the algorithm could efficiently reduce overheads and system cost by 
reducing the amount of resources required for information exchange. 
 
Keywords: Cellular-connected system, cumulative distribution function, cooperative beam 
selection, fingerprint database, signal-to-interference-plus-noise ratio, spectral efficiency, 
unmanned aerial vehicle. 

mailto:sya8325@naver.com


KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 17, NO. 9, September 2023                          2591 

1. Introduction 

Unmanned aerial vehicles (UAVs) are attracting attention as a key element of new radio (NR) 
systems because of their high-altitude and mobility characteristics, specifically because they 
can exceed the limits of terrestrial networks. UAVs are also being used in diverse 
environments such as commodity delivery, natural disaster monitoring, and remote-control 
platforms because of their flexibility and mobility [1-3]. Additionally, UAVs can facilitate 
communication between aviation and ground networks. 

Recently, network usage has increased with the increased demand for data. Consequently, 
the range of communication frequencies has been extended to include high-frequency 
millimeter waves to accommodate the increased usage and solve the data traffic problem [4]. 
In this context, UAVs with high-speed and high-altitude characteristics have emerged as a 
promising solution. UAVs can access data at high speeds; hence, in NR systems, where UAVs 
are used as base stations (BSs) or user equipment (UE), they can facilitate high-speed 
transmission. 

However, high-altitude UAVs are likely to be affected by intercell interference from other 
BSs or UE because the line-of-sight (LOS) probability increases. For the mitigation of such 
interference, research on beamforming technology is being conducted, and beam selection 
algorithms for selecting the optimal beam to maximize the transmission efficiency are being 
studied. A commonly used method involves selecting the optimal beam on the basis of the 
perfect channel state information under the assumptions of accurate channel estimation and 
channel feedback [5]. However, this method introduces overheads because the users’ 
environments and channel status information need to be compared individually. To reduce the 
overhead, a study proposed a compressed-sensing-based beam selection method rooted in the 
scarcity of millimeter-wave channels [6]. This method can reduce the execution time by 
estimating the location or direction of the UE. In addition, a method of using a fingerprint 
storing location-based channel information or received signal strength is mainly used to help 
users select an appropriate beam at a specific location. In [7], to increase the efficiency of 
beam tracking, a method of tracking the beam using a fingerprint storing channel information 
by mapping the beamforming gain and the user position was proposed. In [8], a technique for 
selecting different beams to eliminate interference between users, which involved the use of 
group-based fingerprint information was proposed. In [9], we proposed a method of selecting 
an appropriate beam according to multiple location-based fingerprints collected considering 
traffic density. 

In this paper, for a UAV-enabled cellular cooperative system, we propose an algorithm to 
select the optimal beam on the basis of the user type by using a fingerprint database based on 
users’ locations. The proposed algorithm can be divided into a location-based fingerprint 
database construction process and a cooperative beam selection process. During the 
construction of the fingerprint database, for improving the performance of UE strongly 
affected by interference, such as those located at the cell edge or at high altitudes, both their 
optimal-beam-related information and interference-beam-related information are stored. 
During the cooperative beam selection process, instead of comparing individually with the 
existing status information, the optimal beam for the user’s location is selected by 
simultaneously using the optimal beam information and interference beam information from 
the location-based fingerprint database created in the previous process. 

The remainder of this paper is organized as follows. Section 2 defines the system model 
and introduces the applied channel model. Further, Section 3 presents the cooperative beam 
selection algorithm, which involves the use of a location-based fingerprint database, for a 
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cellular cooperative system. Next, Section 4 discusses the performance of the algorithm in 
simulation environments and presents the simulation results. Finally, the conclusions of this 
study are provided in Section 5. 

2. Cellular-Cooperative Downlink System Model and Channel Model 

2.1 Cellular-Cooperative Downlink Systems 

In this study, we considered NR downlink systems in which terrestrial base stations (T-BSs) 
support multiple terrestrial UE (T-UE) and unmanned aerial vehicle-user equipment (UAV-
UE) in a multicell environment as depicted in Fig. 1 [10]. The network comprised hexagonal 
cells, each of which was divided into three sectors. Each cell contained a T-BS that supported 
multiple T-UE and UAV-UE in the downlink system. In particular, we considered all T-UE to 
be outdoors, not inside a building, and all UAV-UE to be randomly distributed between the 
altitudes of 50 and 300 m [11-13]. Location information is essential for applying the proposed 
algorithm, and the propagation environment of the signal in the case of indoor T-UE is more 
complicated than that in the case of outdoor T-UE [11-13], which can cause outliers and noise 
in calculating the normal received signal strength, making it difficult to calculate the exact 
value. Therefore, an efficient location-based fingerprint database construction method that can 
remove data outliers and noise is needed [14], which is left as a future research project. This 
paper only considers outdoor T-UE and UAV-UE. 
 

 
Fig. 1. Cellular-cooperative downlink systems. 

 
Each T-BS has 𝑁𝑁𝐵𝐵𝐵𝐵  antennas and 𝑁𝑁𝑅𝑅𝑅𝑅  radio-frequency (RF) chains, with each antenna 

supporting K T-UE and UAV-UE [15]. 
 

𝑦𝑦𝑏𝑏𝑏𝑏 = ℎ𝑏𝑏𝑏𝑏𝑏𝑏𝑤𝑤𝑏𝑏𝑠𝑠𝑏𝑏 + � ℎ𝑖𝑖𝑏𝑏𝑏𝑏𝑤𝑤𝑖𝑖𝑠𝑠𝑖𝑖𝑖𝑖≠𝑏𝑏
+ 𝜖𝜖𝑏𝑏𝑏𝑏 . (1) 

  
The signal received by the kth user in the bth cell can be expressed as (1), where, 𝑤𝑤𝑏𝑏 ∈

𝐶𝐶𝑁𝑁𝐵𝐵𝐵𝐵×𝐾𝐾  denotes a digital precoding matrix, 𝑠𝑠𝑏𝑏 ∈ 𝐶𝐶𝐾𝐾×1 (𝑠𝑠𝑏𝑏 = [𝑠𝑠𝑏𝑏,1, … , 𝑠𝑠𝑏𝑏,𝐾𝐾]𝑇𝑇)  represents a 
data symbol vector corresponding to the bth cell, 𝑠𝑠𝑏𝑏,𝑏𝑏  is the data symbol of the kth UE in the 
bth cell, 𝜖𝜖𝑏𝑏𝑏𝑏~ 𝐶𝐶𝑁𝑁(0, 𝜎𝜎𝜖𝜖2) is the thermal noise, and ℎ𝑖𝑖𝑏𝑏𝑏𝑏 ∈ 𝐶𝐶

1×𝑁𝑁𝐵𝐵𝐵𝐵  denotes the channel vector 
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between the ith T-BS and kth UE in the bth cell. 
 

𝐔𝐔𝐔𝐔𝐔𝐔𝐔𝐔(NBS) = �u0, u1, … , uNBS−1�, (2) 

 

u𝑏𝑏 =
1

�NBS
[1, 𝑒𝑒𝑗𝑗

2𝜋𝜋
NBS

𝑏𝑏, 𝑒𝑒𝑗𝑗
2𝜋𝜋
NBS

2𝑏𝑏, … , 𝑒𝑒𝑗𝑗
2𝜋𝜋
NBS

(NBS−1)𝑏𝑏]𝑇𝑇 , 
(3) 

 
𝐔𝐔𝐔𝐔𝐔𝐔𝐔𝐔 = 𝐔𝐔𝐔𝐔𝐔𝐔𝐔𝐔�NBS

H �⨂𝐔𝐔𝐔𝐔𝐔𝐔𝐔𝐔�NBS
𝑉𝑉 �. (4) 

  
In an existing massive multiple-input multiple-output system, an RF chain is required for 

each antenna; therefore, an antenna is configured as a lens to reduce the number of RF chains 
required. An array of such lens-type antennas acts as a discrete Fourier transform (DFT) vector 
in space, which includes an array steering vector. The spatial DFT codebook of a uniform 
linear array (ULA) with NBS antennas can be expressed as (2), and the parameter 𝑢𝑢𝑏𝑏, which 
denotes the bth codeword, is given by (3). By using the Kronecker product, we can expand the 
ULA codebook to obtain a codebook suitable for a uniform planar array (UPA) with NBS (=
𝑁𝑁𝐵𝐵𝐵𝐵𝐻𝐻 × 𝑁𝑁𝐵𝐵𝐵𝐵𝑉𝑉 ) antennas, expressed as (4). 

2.2 Channel Model 
In this study, a Third-Generation Partnership Project (3GPP)-based UAV channel model was 
employed, and a spatial channel model (SCM) was used between the T-BS and UE [11], [13]. 
The parameters of the statistical model employed in the SCM were calculated statistically by 
performing repeated measurements. Furthermore, the parameters of the deterministic model 
employed in the SCM were calculated using a ray-tracing model that mathematically 
expressed and tracked propagation characteristics [15-16]. Among them, a geometry-based 
stochastic model that utilized both these models was used in this study. 

When the aforementioned SCM model is used, the channel parameters should be set 
according to the scenario considered. In this study, we considered the UMa-AV scenarios. 
Detailed model descriptions can be found in the papers listed in the 3GPP bibliography; 
therefore, they have been omitted from this paper [11], [13]. The process of generating channel 
correlation coefficients is useful for designing a network for a scenario and computing the 
general parameters of large-scale fading models, such as path loss and shadow fading models. 
Next, small-scale parameters such as cluster power and arrival angle should be set, and the 
channel correlation coefficients should be calculated. The path-loss and shadow fading models 
used in this study correspond to the UMa scenario described in [11] and [13]. 
 

𝐇𝐇� = ��̃�𝐡𝟏𝟏, �̃�𝐡𝟐𝟐, … , �̃�𝐡𝐊𝐊� = 𝐔𝐔𝐇𝐇 = [𝐔𝐔𝐡𝐡𝟏𝟏,𝐔𝐔𝐡𝐡𝟐𝟐, … ,𝐔𝐔𝐡𝐡𝐤𝐤], (5) 
 

𝐇𝐇�b ∈ 𝐶𝐶𝐾𝐾×𝐾𝐾 = 𝐇𝐇�(m, ∶)m∈𝐒𝐒, (6) 
 

𝐰𝐰�b = 𝛼𝛼𝐇𝐇�b(𝐇𝐇�𝑏𝑏𝐻𝐻𝐇𝐇�b)−1. (7) 
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To construct a channel vector in this system, considering (2) in Subsection 2.1, the spatial 
DFT codebook of a ULA must be expanded to the form of UPA as given by (4). Moreover, the 
channel vector can be represented by the product of the UPA codebook vector U and the 
channel vector h using the SCM channel model. Referring to (5), �̃�𝐡k (k = 1,2, … ,𝐾𝐾) denotes 
the beam space channel vector of the kth UE. If a T-BS has K RF chains (𝑁𝑁𝑅𝑅𝑅𝑅 = 𝐾𝐾) and uses 
an antenna array configured as a lens, a reduced-dimensional channel model should be 
formulated. Therefore, when using such an antenna array, the channel model can be expressed 
as (6), where S represents the set of selected beam indexes. In this study, a simple zero-forcing 
(ZF) precoder was used as a digital precoder; the dimensionally reduced ZF precoding matrix 
𝐰𝐰�b (𝐰𝐰�b ∈ 𝐶𝐶𝐾𝐾×𝐾𝐾) is given by (7), where α is a scaling constant. 

3. Cooperative Beam Selection Algorithm Using Location-based 
Fingerprint Database in Cellular Cooperative Systems 

Herein, we propose an algorithm for selecting the optimal beam such that T-UE at the edge of 
a cell or UAV-UE at a high altitude is less affected by interference from other cells. 

The algorithm can be divided into two stages. The first stage involves creating a location-
based fingerprint database containing necessary information about various types of UE, which 
are classified using a criterion proposed herein. In the second stage, interference between cells 
is mitigated by using the constructed database. In the cooperative beam selection process, the 
amount of information exchanged between T-BSs affects resource utilization, which directly 
determines the cost of the system. However, our optimal beam selection algorithm is efficient 
because it reduces the amount of resources required for information exchange according to 
user classification. 

3.1 Location-Based Fingerprint Database Construction 

A location-based fingerprint database was constructed for both T-UE and UAV-UE positioned 
in each cell. During the construction of the database, data on UE location, serving cell ID, and 
optimal beam ID were stored, and in the case of UE susceptible to intercell interference, 
interference-related data were also stored. 
 

𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟𝑒𝑒𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 − 𝑑𝑑𝑟𝑟𝑠𝑠𝑟𝑟𝑑𝑑𝑟𝑟𝑟𝑟𝑒𝑒 = 3𝐷𝐷 − 𝑑𝑑𝑟𝑟𝑠𝑠𝑟𝑟𝑑𝑑𝑟𝑟𝑟𝑟𝑒𝑒 × cos(𝜓𝜓). (8) 
  

Before explaining the specific process of creating a fingerprint database, we propose 
criteria for UE classification. First, UE were classified into ground user, T-UE, and aerial user 
UAV-UE. We used a hexagonal cell network structure with inter site distance (ISD) = 500 [m]. 
We approximated hexagonal cells inside a circle with a radius of 250 [m] for computational 
convenience. The critical radius at which the area ratio of the center and edge of a cell was 1:1 
was determined to be 175 [m]. The space covered by a circle of radius 175 [m] in a cell was 
termed cell-center two-dimensional (2D) space, and the space outside this circle inside the cell 
was defined as cell-edge 2D space (illustrated in Fig. 2). Accordingly, if the projection distance 
between the T-UE and T-BS, calculated using (8), was less than 175 [m], the T-UE was 
classified as cell-center T-UE; if it was greater than 175 [m], the T-UE was classified as cell-
edge T-UE. All the parameters used in (8) are illustrated in Fig. 3. 

In addition, UAV-UE were classified as cell-center UAV-UE and cell-edge UAV-UE by 
using the aforementioned projection distance of 175 [m] between the UAV-UE and T-BS. 
However, because UAV-UE are airborne, a three-dimensional (3D) space should be considered. 
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Therefore, as shown in Fig. 2, for UAV-UE, the cell-center and cell-edge 3D spaces were 
demarcated using a cylindrical column with a base radius of 175 [m]. 

Furthermore, because UAV-UE are located at different altitudes in 3D space, the LOS 
probability varies significantly with altitude. Therefore, it is necessary to consider the altitude. 
The proposed algorithm accordingly specifies a certain threshold altitude. If the altitude of the 
UAV-UE is higher than the threshold altitude, the probability of the UAV-UE being affected 
by intercell interference is high; in such a case, even if the UAV-UE is in the cell-center 3D-
space, it is considered to be a cell-edge UAV-UE. 

The following is a process of constructing beam information from a fingerprint database 
[15]. The beam selection process is divided into beam sweeping, beam measurement, beam 
determination, and beam reporting. First, beam sweeping transmits a previously known beam 
to cover a large space and then identifies the most optimal beam at a specific location along 
with the interference beam most affected by neighboring cells. Further, during the beam 
measurement process, the signal received at the specific user location is measured, and the 
optimal beam is determined for each location according to the measured value. Therefore, 
identifying the optimal beam ID is the same as selecting a beam with the largest channel vector 
norm (��̃�𝐡𝐊𝐊�) from the codebook U by calculating (5) using exhaustive search. In the case of 
users who are vulnerable to interference, interference-related information should also be stored; 
in this case, similar to the previous case, the exhaustive search method can be employed by 
using a channel vector (𝐡𝐡𝐤𝐤) from a neighboring cell. 

 
 

 
Fig. 2. Classification of UE types. 

 

 
Fig. 3. Projection-distance measurement method. 
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In summary, the fingerprint database of a cell was constructed by considering the 
locations of all the T-UE and UAV-UE in the cell, and the locations of the UE and the optimal 
beam ID were recorded as the measurement contents. In the case of UE, which were strongly 
affected by interference, because interference-related information should be stored, the IDs of 
the interference cell and the corresponding interference beam were also stored. 

Table 1. Example of fingerprint database. 

UAV-UE T-UE 
Cell-center Cell-edge Cell-center Cell-edge 

𝑃𝑃1 … 𝑃𝑃𝐴𝐴 𝑃𝑃𝐴𝐴+1 … 𝑃𝑃𝐴𝐴+𝑛𝑛 𝑝𝑝1 … 𝑝𝑝𝐵𝐵 𝑝𝑝𝐵𝐵+1 … 𝑝𝑝𝐵𝐵+𝑇𝑇 

𝐵𝐵1
𝑜𝑜𝑜𝑜𝑜𝑜 … 𝐵𝐵𝐴𝐴

𝑜𝑜𝑜𝑜𝑜𝑜 

𝐵𝐵𝐴𝐴+1
𝑜𝑜𝑜𝑜𝑜𝑜  … 𝐵𝐵𝐴𝐴+𝑛𝑛

𝑜𝑜𝑜𝑜𝑜𝑜  

𝑏𝑏1
𝑜𝑜𝑜𝑜𝑜𝑜 … 𝑏𝑏𝐵𝐵

𝑜𝑜𝑜𝑜𝑜𝑜 

𝑏𝑏𝐵𝐵+1
𝑜𝑜𝑜𝑜𝑜𝑜  … 𝑏𝑏𝐵𝐵+𝑇𝑇

𝑜𝑜𝑜𝑜𝑜𝑜  

�̃�𝐶𝐴𝐴+1
𝐼𝐼_1  𝐵𝐵�𝐴𝐴+1

𝐼𝐼_1  … �̃�𝐶𝐴𝐴+𝑛𝑛
𝐼𝐼_1  𝐵𝐵�𝐴𝐴+𝑛𝑛

𝐼𝐼_1  �̃�𝑟𝐵𝐵+1
𝐼𝐼_1  𝑏𝑏�𝐵𝐵+1

𝐼𝐼_1  … �̃�𝑟𝐵𝐵+𝑇𝑇
𝐼𝐼_1  𝑏𝑏�𝐵𝐵+𝑇𝑇

𝐼𝐼_1  

�̃�𝐶𝐴𝐴+1
𝐼𝐼_2  𝐵𝐵�𝐴𝐴+1

𝐼𝐼_2  … �̃�𝐶𝐴𝐴+𝑛𝑛
𝐼𝐼_2  𝐵𝐵�𝐴𝐴+𝑛𝑛

𝐼𝐼_2  �̃�𝑟𝐵𝐵+1
𝐼𝐼_2  𝑏𝑏�𝐵𝐵+1

𝐼𝐼_2  … �̃�𝑟𝐵𝐵+𝑇𝑇
𝐼𝐼_2  𝑏𝑏�𝐵𝐵+𝑇𝑇

𝐼𝐼_2  

 
Table 1 presents an example of a fingerprint database of a cell. The UE were first divided 

into UAV-UE and T-UE and then into cell-center UE and cell-edge UE. For the cell-center UE, 
only optimal-beam-related information was stored, and for cell-edge UE, interference-related 
information was stored along with optimal-beam-related information. In this study, if the 
altitude of a UAV-UE was greater than the arbitrarily specified threshold altitude, it was 
considered to be strongly affected by interference and stored in the cell-edge area in the 
fingerprint database, even if it was located in the cell-center 3D space. For the UAV-UE, let 
𝑃𝑃𝑎𝑎  (𝑑𝑑 = 1, 2, … ,𝐴𝐴,𝐴𝐴 + 1, … ,𝐴𝐴 + 𝑟𝑟)  represent the fingerprint location and 𝐵𝐵𝑎𝑎

𝑜𝑜𝑜𝑜𝑜𝑜  (𝑑𝑑 =
1,2, … ,𝐴𝐴,𝐴𝐴 + 1, … ,𝐴𝐴 + 𝑟𝑟) represent the optimal beam ID at the said fingerprint location. As 
discussed in the next section, in this study, interference-related information was exchanged 
using the intra-joint transmission (intra-JT) method. Let �̃�𝐶𝑎𝑎

𝐼𝐼_1 (𝑑𝑑 = 1, 2, … ,𝐴𝐴,𝐴𝐴 + 1, … ,𝐴𝐴 +
𝑟𝑟)  and 𝐵𝐵�𝑎𝑎

𝐼𝐼_1  (𝑑𝑑 = 1, 2, … ,𝐴𝐴,𝐴𝐴 + 1, … ,𝐴𝐴 + 𝑟𝑟 ) represent the ID of the strongest interference 
cell and the corresponding interference ID, respectively, and let �̃�𝐶𝑎𝑎

𝐼𝐼_2 (𝑑𝑑 = 1, 2, … ,𝐴𝐴,𝐴𝐴 +
1, … ,𝐴𝐴 + 𝑟𝑟)  and 𝐵𝐵�𝑎𝑎

𝐼𝐼_2  ( 𝑑𝑑 = 1, 2, … ,𝐴𝐴,𝐴𝐴 + 1, … ,𝐴𝐴 + 𝑟𝑟 ) represent the ID of the second-
strongest interference cell and the corresponding interference beam ID, respectively. The T-
UE fingerprint database was constructed using the same rules as those used to construct the 
UAV-UE fingerprint database; however, there was a difference between the two databases: 
they were expressed in uppercase and lowercase letters for distinguishing between them. 

We used the reference signal received quality (RSRQ) as a database measurement 
indicator [17]. This was because the information provided by the reference signal received 
power (RSRP) could be insufficient in the event of unstable handover or cell reselection. Using 
RSRQ instead of RSRP could prevent such a problem. Furthermore, RSRP considers only the 
signals from the serving cells received by the terminal, whereas RSRQ additionally considers 
the signals received from the target cells other than the serving cells, which facilitates load 
balancing. 

 

RSRQ = 𝑁𝑁 × RSRP/NR− carrier RSSI, (9) 
 

ξn = dn + cn + 10𝑙𝑙𝑟𝑟𝑙𝑙(𝐵𝐵𝐵𝐵). (10) 
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 RSRQ refers to the quality of the received signal considering the number of resource 
blocks and is calculated using (9), where N denotes the number of resource blocks in the NR-
carrier received signal strength indicator (RSSI) measurement bandwidth and RSRP denotes 
the magnitude of the signal from the serving cell; in particular, RSRP indicates the measured 
power value of one resource block. NR-carrier RSSI refers to the sum of all signals received 
by the terminal from the target cell and those received from the serving cell, i.e., the total 
received power within the measurement bandwidth of N resource blocks. The signal received 
from the serving cell uses the RSRP value, and the signal received from a target cell other than 
the serving cell is determined on the basis of the altitude. Because the LOS probability 
increases with a UAV-UE’s altitude, the UAV-UE may receive a signal from multiple target 
cells. Therefore, the reception signal from the target cell is classified using the threshold 
altitude, which is one of the adjustment variables mentioned in the previous section. If the 
altitude of the UAV-UE is less than the threshold altitude, its probability of being affected by 
nearby cells is considered to be low, and the signals received from the three nearest cells are 
classified as signals from target cells. Conversely, if the altitude is greater than the threshold 
altitude, the LOS probability is high, and interference signals may be received from six nearby 
cells. Accordingly, the signals received only from these six cells are divided into signals from 
the target cells. In addition to the magnitude of the received signal, components such as 
interference and noise should be considered. In the case of interference, in this study, only the 
interference that had a strong effect was considered in the calculation [9], and path loss and 
shadowing were calculated as components of interference. The noise power ξn was calculated 
using (10), which accounts for the thermal noise density (dn), received noise figure (cn), and 
bandwidth. The received noise figure (cn) was 9 [dB], and the thermal noise density (dn) was 
−174 [dBm/Hz]. 

3.2 Cooperative Beam Selection Algorithm According to User Classification. 

 
𝑃𝑃𝑜𝑜∗ = argmin

𝑎𝑎∈1,…,𝐴𝐴+𝑛𝑛
|𝑃𝑃𝑜𝑜 − 𝑃𝑃𝑎𝑎|2 (11-1) 

 
𝑝𝑝𝑜𝑜∗ = argmin

𝑎𝑎∈1,…,B+T
|𝑝𝑝𝑜𝑜 − 𝑝𝑝𝑎𝑎|2 (11-2) 

  
The location information of UE can be used easily because of the high-level Global Positioning 
System modules built into them. Furthermore, the T-BS checks the received UE location 
information against the measured location information in the fingerprint database. The 
checking process is performed at a point where the error between the actual UE location and 
the location recorded in the fingerprint database is minimum as expressed by (11). Here, 𝑃𝑃𝑜𝑜 is 
the current location of the UE and 𝑃𝑃𝑎𝑎  is the location recorded in the fingerprint database. 
Consequently, the matched location (𝑃𝑃𝑜𝑜∗) can be obtained at the point with the smallest square 
error between the two values. Equation (11-1) is for UAV-UE, while (11-2) is for T-UE. The 
definitions of 𝑝𝑝𝑜𝑜∗, 𝑝𝑝𝑜𝑜, and 𝑝𝑝𝑎𝑎  in (11-2) are the same as those in (11-1), but lowercase letters are 
used in (11-2) for distinguishing them. 
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After the checking process is completed, a fingerprint database corresponding to the 
location (𝑃𝑃𝑜𝑜∗ 𝑟𝑟𝑟𝑟 𝑝𝑝𝑜𝑜∗) is created, and the serving cell and optimal beam IDs stored in the database 
can be used. In the case of UE that are susceptible to interference, interference-related 
information may be used. Therefore, the fingerprint database of matched UE indicates the type 
of UE. In the case of high-altitude UAV-UE or cell-edge UE, interference-related information 
can also be used. 

𝑆𝑆𝑆𝑆𝑁𝑁𝑆𝑆𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜. =
∑ 10

𝜉𝜉𝑐𝑐
10𝑐𝑐∈𝐶𝐶

�∑ 10
𝜉𝜉𝑖𝑖
10𝑖𝑖∈𝐵𝐵 � − ∑ 10

𝜉𝜉𝑐𝑐
10𝑐𝑐∈𝐶𝐶 + 𝑁𝑁0

 
(12) 

 

𝑆𝑆𝑆𝑆𝑁𝑁𝑆𝑆𝑛𝑛𝑜𝑜𝑛𝑛−𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜. =
10

𝜉𝜉𝑏𝑏
10

�∑ 10
𝜉𝜉𝑖𝑖
10𝑖𝑖∈𝐵𝐵 � − 10

𝜉𝜉𝑏𝑏
10 + 𝑁𝑁0

 
(13) 

 
First, if the T-UE is identified as a cell-edge T-UE, it is more likely to be affected by 

interference compared to cell-center T-UE. Therefore, to improve the performance of cell-edge 
T-UE, we used the joint transmission (JT) method to exchange interference-related 
information stored in the fingerprint database for assisting with beam selection; this process is 
called the “Coop. method,” where “Coop.” is the abbreviation of “cooperation.” In the Coop. 
method, multiple nearby cells cooperate to share stored information and select the optimal 
beam by jointly transmitting the related data to the UE. In this case, because the interference 
signal of the neighboring cell may also be used, interference from the neighboring cell may be 
reduced [15]. When the Coop. method is used, the signal-to-interference-plus-noise ratio 
(SINR) is determined using (12), and when the Coop. method is not used, the SINR is 
determined using (13). Here, 𝜉𝜉𝑎𝑎 represents the power received from cell a, B represents the set 
of BSs, and C represents the set of JT-BSs. Therefore, according to (12), the Coop. method 
improves the reception power and reduces interference, thereby improving the performance.  

The same holds true for UAV-UE. As mentioned, cell-center UAV-UE and cell-edge UAV-
UE were distinguished by considering their altitude and location information, such as cell-
center 3D space and cell-edge 3D space. The Coop. method was applied only to the UAV-UE 
in cell-edge 3D space, which were susceptible to interference, to reduce the effect of 
interference, improve signal performance, and reduce the amount of resources required for 
information exchange. 

The proposed algorithms for location-based fingerprint database construction and optimal 
beam selection are presented in Figs. 4 and 5, respectively. 
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Fig. 4. Location-based fingerprint database construction algorithm. 

 

 
Fig. 5. Cooperative beam selection algorithm. 
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4. Simulation Results 
This section presents the simulation environment and an analysis of the simulation results. 

4.1 Simulation Setup 

We considered an NR downlink system in which a T-BS located within each cell supported 
multiple UE, including UAV-UE and T-UE. The carrier frequency was set to 30 GHz on the 
basis of a bandwidth of 100 MHz. The “UMa-AV” scenario was considered, and the simulation 
was conducted on 19 cell systems divided into 3 sectors by system-level simulation. The 
specific parameters used in the experiment are listed in Table 2. The simulation environment 
was designed by referring to [9]. 

The SINR cumulative distribution function (SINR CDF) and spectral efficiency 
cumulative distribution function (SE CDF) were used as performance analysis metrics in the 
downlink-system-based simulations. 

 
Table 2. Simulation parameters. 

Parameters Values 

Cell layout ISD = 500m, hexagonal grid, 19 cells,  
3 sectors/cell 

Carrier frequency (GHz) 30 

Bandwidth (MHz) 100 

T-BS Tx power (dBm) 35 

Antenna configuration T-BS : (UPA) 8 × 8 

BS Tx power T-UE : single / UAV-UE : single 

Modulation QPSK 

Scenario UMa 

T-BS height (m) 25 

T-UE height (m) 1.5 

UAV-UE altitude distribution Uniformly distributed between 50m and 300m 
Measure indicator RSRQ 

Classification indicator 
(cell-center / cell-edge) Projection-distance 

Numerology 2 (normal) 
SCS [kHz] 60 

Sub-frame [ms] 1 
RB [kHz] 720 

𝑁𝑁𝐵𝐵𝐶𝐶  (=SCS/RB) 12 
𝑁𝑁𝑅𝑅𝐵𝐵 132 
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𝑁𝑁𝑜𝑜𝑜𝑜𝑜𝑜 (=𝑁𝑁𝐵𝐵𝐶𝐶  × 𝑁𝑁𝑅𝑅𝐵𝐵) 1584 
𝑇𝑇𝑏𝑏 1 / (60 × 103) 
𝑓𝑓𝑠𝑠 60 × 103 × 2048 

 

4.2 Performance Evaluation and Analysis 

Figs. 6 and 7 depict the results of a simulation conducted to determine the degree of 
interference depending on the ratio of cell-center UE to cell-edge UE before the proposed 
algorithm was applied. The number of UE per sector used in each of the graphs is presented 
in rows 1–3 of Table 3. In the performance analysis, SINR CDF and SE CDF were used. 
 
 

 
Table 3. The Number of UEs per sector used in the cases shown in Figs. 6-9. 

 T-UE UAV-UE 
Cell-center Cell -edge Cell -center Cell -edge 

Parameter 1 4 12 4 12 
Parameter 2 8 8 8 8 
Parameter 3 12 4 12 4 
Parameter 4 8 8 8 8 
Parameter 5 12 12 4 4 
Parameter 6 16 16 0 0 

 
Rows 1–3 of Table 3 indicate that as Parameter 1 transitioned to Parameter 3, the number 

of UE located in the cell-edge region decreased. Because the cell-edge region was more 
strongly affected by interference than the cell-center region, Parameter 1 indicates worse 
performance than Parameter 3. As shown in Figs. 6 and 7, the performance improved in the 
order of Parameter 1, Parameter 2, and Parameter 3. 

 
Fig. 6. Dependence of the SINR CDF on the ratio of the number of cell-center UE to the number of 

cell-edge UE. 
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Fig. 7. Dependence of the SE CDF on the ratio of the number of cell-center UE to the number of cell-

edge UE. 
 

Figs. 8 and 9 present the results of a simulation conducted to understand the dependence 
of the degree of influence of interference on the number of UAV-UE before the application of 
the proposed algorithm. The numbers of UE per sector used in each of the graphs are listed in 
rows 4–6 of Table 3. The number of UAV-UE was adjusted first according to each graph, and 
the number of T-UE was adjusted to match the number of all UE by sector consistently. In this 
case, the ratio of the number of cell-center UE to the number of cell-edge UE was set to 50% 
for both T-UE and UAV-UE. Performance analysis was performed using the SINR CDF and 
SE CDF. 

Rows 4–6 of Table 3 reveal that as Parameter 4 transitioned to Parameter 6, the number 
of UAV-UE decreased. Because the UAV-UE at a high altitude is more strongly affected by 
interference than the T-UE, Parameter 4 indicates worse performance than Parameter 6. As 
shown in Figs. 8 and 9, the performance improved in the order of Parameter 4, Parameter 5, 
and Parameter 6. 

  
Fig. 8. Dependence of the SINR CDF on the number of UAV-UE. 
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Fig. 9. Dependence of the SE CDF on the number of UAV-UE. 

 
 Figs. 11–14 show the results of several simulation cases performed to compare and 
analyze the performance of the proposed technique. In Category 1, T-UE were those to which 
the proposed Coop. method was not applied, and in Category 2, T-UE were those cell-edge T-
UE to which the Coop. method was applied, not cell-center T-UE. Furthermore, applying the 
proposed algorithm to UAV-UE requires a threshold altitude to be specified. Accordingly, the 
UAV-UE were classified into three cases, namely, Cases 1, 2, and 3, which represented UAVs 
with threshold altitudes of 300, 175, and 50 [m], respectively. If the altitude of a UAV-UE was 
greater than the threshold altitude, its probability of being affected by interference was 
considered to be high, and the Coop. method was applied to it. It is divided into two cases: 
Scheme 1 and Scheme 2. First, in Scheme 1, the Coop. method is not applied unconditionally. 
On the other hand, in Scheme 2, UAV-UE is divided into cell-center and cell-edge, and the 
Coop. method is applied only to cell-edge that is greatly affected by interference. For easy 
comprehension by the reader, these performance analysis scenarios are visually depicted in 
Fig. 10. 
 

 
Fig. 10. Performance analysis scenarios. 
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Figs. 11 and 12 depict the results of the simulation in which the performance of Category 
1 was analyzed. In other words, the Coop. method was not applied to T-UE but to a few UAV-
UE. However, the Coop. method was applied to all the UAV-UE whose altitudes exceeded the 
threshold altitude. Conversely, when the altitude was lower than the threshold value, the 
analysis was divided into two schemes: Scheme 1 without the Coop. method and Scheme 2 
where the Coop. method was applied only to the cell-edge UAV-UE. In Case 3, the UAV-UE 
were evenly distributed between 50 and 300 m, and the threshold altitude was set to 50 m. In 
this case, it was not possible to distinguish between Scheme 1 and Scheme 2; therefore, the 
Coop. method was applied to all the UAV-UE. 

The simulation results presented in Figs. 11 and 12 indicate that as the set threshold 
altitude was gradually reduced, the performance improved from Case 1 to Case 3. In addition, 
it was observed that Scheme 2, in which cell-edge and cell-center UE were separated and the 
Coop. method was applied to the cell-edge UE, performed better than Scheme 1. Therefore, 
“Category 1-Case 3” represented the optimal result because the Coop. method was applied to 
all the UAV-UE, resulting in performance improvements for all UAV-UE that were strongly 
affected by interference. 

However, beam selection using the Coop. method led to heavy resource consumption for 
information exchange. Because this affected the system cost, it was efficient to apply the Coop. 
method to only a small number of UE, even if the performance was slightly reduced. Therefore, 
on the basis of Figs. 11 and 12, the performance of “Category 1-Case 2-Scheme 2” was found 
to be the closest to that of the optimal case. In other words, after setting the threshold altitude 
to 175 [m], we found that the application of the proposed algorithm to UAV-UE was efficient 
and did not significantly affect performance. 

 
Fig. 11. Performance analysis of algorithms in Category 1 (SINR CDF). 
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Fig. 12. Performance analysis of algorithms in Category 1 (SE CDF). 

 
 Figs. 13 and 14 present the performance analysis results of the proposed algorithm for 
Category 2, i.e., when the Coop. method was applied only to cell-edge T-UE and a few UAV-
UE. The patterns in Figs. 13 and 14 are similar to those of Category 1. Therefore, after setting 
the threshold altitude to 175 [m], we confirmed that application of the proposed algorithm to 
both UAV-UE and T-UE could lead to efficient beam selection without significant performance 
degradation. 

The performance of Category 2 was superior to that of Category 1 as indicated by the 
CDF value of 0.5 reference SINR for “Category 1-Case 2-Scheme 2” and “Category 2-Case 
2-Scheme 2” in Figs. 11 and 13, respectively. For the CDF value of 0.5, the SINR values of 
“Category 1-Case 2-Scheme 2” and “Category 2-Case 2-Scheme 2” were −3 and 0 [dB], 
respectively, which indicated the superior performance of “Category 2-Case 2-Scheme 2” 
because Category 2 applied the Coop. method to the cell-edge T-BS. In conclusion, when the 
proposed algorithm was applied to both T-UE and UAV-UE, it showed the best performance 
while being efficient in terms of system cost. 

 
Fig. 13. Performance analysis of algorithms in Category 2 (SINR CDF). 
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Fig. 14. Performance analysis of algorithms in Category 2 (SE CDF). 

5. Conclusion 
We propose a cooperative beam selection algorithm that uses a location-based fingerprint 
database for a UAV-based cellular cooperation system. The algorithm can be divided into an 
offline process of creating a location-based fingerprint database and an online process of 
selecting an optimal beam by using the fingerprint database. We divided the UE that were 
considerably affected by interference into ground-based UE and airborne UE, particularly UE 
located at the center and edges of a cell. Furthermore, the UAV-UE were classified according 
to their altitudes. The performance of UE with a high probability of being affected by 
interference was improved by facilitating cooperation between multiple cells for the sharing 
of interference-related information. 
 A system-level simulation conducted to analyze the performance of the proposed 
algorithm showed that the optimal beam was selected with high efficiency. From the 
performance analysis of the proposed algorithm in various scenarios, it was confirmed that the 
performance did not decrease significantly even if the proposed algorithm was applied to some 
users who were vulnerable to interference, not all the users. This implies that the proposed 
algorithm could reduce the effect of intercell interference and increase the performance of the 
desired signal. Furthermore, the proposed algorithm was found to be efficient in terms of 
reducing overheads and system cost. High efficiency was achieved by reducing the amount of 
resources required for information exchange. 
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